2025-10-08
又一个同构不等式
2025-10-08 ~ 2025-10-08

题目:若 $a>0,b>0$,且
则判断下列选项的正误:
A: $a>b$ ; B: $a<b$ ; C: $2a>b$ ; D: $2a<b$。


解答

由已知等式两边同除以 $(a+1)(b+2)$,得到
$$
\frac{e^a}{a+1}=\frac{e^b+1}{b+2}.
$$


$$
f(x)=\frac{e^x}{x+1},\qquad g(x)=\frac{e^x+1}{x+2}\qquad(x>0).
$$

2025-10-06
一个同构不等式
2025-10-06 ~ 2025-10-06

证明:
$$\frac{sin(x^2)}{sin(x)}>x,(0<x<1)$$


① 不等式等价变形

由于 $0<x<1$ 时 $\sin x > 0$,两边同乘以 $\sin x$,不等式等价为
$$
\sin(x^2) > x \sin x
$$
进一步两边同除以 $x^2>0$,得到
$$
\frac{\sin(x^2)}{x^2} > \frac{\sin x}{x}
$$


② 引入辅助函数

定义函数
$$
h(t) = \frac{\sin t}{t}, \qquad t>0
$$

2025-09-06
推导两个一维正态分布的KL散度
2025-09-06 ~ 2025-09-06

$$
P(x) \sim \mathcal{N}(\mu_1, \sigma_1^2), \quad Q(x) \sim \mathcal{N}(\mu_2, \sigma_2^2)
$$

定义

$$
D_{\mathrm{KL}}(P\lVert Q) = \int P(x) \log \frac{P(x)}{Q(x)} dx
$$

则有

$$
\boxed{
D_{\mathrm{KL}}(P\lVert Q) = \ln \frac{\sigma_2}{\sigma_1} + \frac{(\sigma_1^2 - \sigma_2^2) + (\mu_1 - \mu_2)^2}{2\sigma_2^2}
}
$$


Step 1. 分布比值

$$
\frac{P(x)}{Q(x)} = \frac{\sigma_2}{\sigma_1} \exp \left[ \frac{\sigma_1^2(x - \mu_2)^2 - \sigma_2^2(x - \mu_1)^2}{2\sigma_1^2\sigma_2^2} \right]
$$

因此

$$
\log \frac{P(x)}{Q(x)} = \ln \frac{\sigma_2}{\sigma_1} + \frac{(\sigma_1^2 - \sigma_2^2)x^2 + (2\sigma_2^2\mu_1 - 2\sigma_1^2\mu_2)x + (\sigma_1^2\mu_2^2 - \mu_1^2\sigma_2^2)}{2\sigma_1^2\sigma_2^2}
$$